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Computer Analysis of Dielectric Waveguides:
A Finite-Difference Method

EDGARD SCHWEIG, MEMBER; IEEE, AND WILLIAM B. BRIDGES, FELLOW, IEEE

Abstract —A method for computing the modes of dielectric guiding
structures based on finite differences is described. The numerical computa-
tion program is efficient and can be applied to a wide range of problems.
We report here solutions for circular and rectangular dielectric waveguides
and compare our solutions with those obtained by other methods. Limita-
tions in the commonly used approximate formulas developed by Marcatili
are discussed. ‘

I. INTRODUCTION

IELECTRIC WAVEGUIDES of high permittivity

(e, 210) have been proposed as practical waveguid-
ing structures for use in millimeter-wave integrated circuits
(MMIC) [1], [2]. The prospect that the dielectric material
could be a high-resistivity semiconductor raises the further
possibility that active devices could be fabricated directly
into the transmission line. Various practical devices for
millimeter-wave applications utilizing dielectric waveguides
also have been suggested: directional couplers [3], balanced
mixers [3], phase shifters [4], [5], scanning antennas [6],
channel-dropping filters [7]. The theoretical analysis of
.these devices has been based, in the case of rectangular
guides, on the analytical solutions proposed by Marcatili
[8], which can be expressed in simple closed forms. How-
ever, Marcatili’s quasi-plane-wave analysis- is based on
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assumptions that are not met when the permittivity of the
guide is high compared to the outer medium.

Several authors have proposed methods for the study of
rectangular guides: Knox et al. [1] (modification of
Marcatili’s analysis), Goell [9] (expansion in circular
harmonics), Schlosser [10] and Solbach [11] (mode match-
ing), and Yeh [12], [13] (finite elements). With the excep-
tion of Solbach [11], they limit their analyses to relatively
small values of permittivity (¢, = 2.5) and they do not give
the field distributions calculated by their methods.

We have developed a numerical technique based on
finite differences (FD) for computing accurate dispersion
characteristics and field distribution for dielectric wave-
guides. This method is computationally more efficient than
finite elements (FE), thus allowing the use of finer meshes,
a desirable feature when accurate values of the fields are
required.

II. VARIATIONAL FORMULATION

Both the finite-elements method (FE) and the finite-dif-
ference method (FD) are based on a variational principle
[14], [19]. For one-dimensional problems, the two methods
are equivalent [15]. This equivalence is maintained in two-
dimensional problems that have simple rectangular
boundaries. The advantages of a variational approach are:
1) the method does not restrict the shape of the dielectric
interfaces so that complicated dielectric cross-sectional
profiles can be treated; 2) the procedure is numerically
stable; and 3) it permits the use of a graded mesh that can
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be made finer in regions of particular interest or impor-
tance

Consider a wavegulde uniform in the z dlI‘eCtIOIl which
consists of isotropic, lossless dielectric media. Assume that
the cross section can be divided into several subregions
over which the relative permittivity is constant. Further,
assume propagation along the z-axis of the form
exp [j(wt— Bz)] with longitudinal field components H,
and E,. In the subregion S,, H, and E, satisfy the wave
eéquations

2, .2)/ 2 _
(v, +kp){¢}-o (1)
where
k;—K ki - B? (2)
kOE% (3)
¢EHZ (4)
=5, 5)

and v} is the transverse Laplacian, ¢ is the speed of light
in free space, K, is the relative permittivity of the pth
subregion, and ¢ is the permittivity of space. We introduce
a propagation constant normalized to free space

B=8/ ko (6)
and a parameter 7, that quantifies the discontinuity be-
tween regions S, and the outer medium :

w2 .
Tps——gﬁ_;. (7)

The outer medium is assumed here to be free space (K, =1)
and will be referred to by the subscript “4”.

It has been shown [12], [14], [16] that the following
variational expression for k3 can be written:

8= { % {Tp fs P%Vf% ds + B*1. K, fs p‘l’pvf% dS]

-kj[EL¢§dS+EZKPL¢§dS}}=O (8)
2 /4

where J is a quadratic expression of the field values ¢;, ¥,
at each of the N mesh points. The expression for J can be
further simplified (by use of the divergence theorem) so
that it involves only first-order derivatives [16], [17]

J=27pf |€,¢|2ds+327p1<pf |V, ¥[2dS
"% S
+21},B2[s(€7t’4/x6,¢)zds

P

~k; [[g|¢p|2dS+E2KpfS|¢pl2dS]- 9)

This last relation is the basis of our FD procedure.
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Fig. 1. To apply the FD method, the diclectric guide is enclosed in a
box (metalic wall boundary conditions), and the area of interest is
covered by a rectangular grid. The permittivity inside each element
must be uniform.

?Y

|
L. .2

Fig. 2. A typical rectangular element Sp used for FD approximations, of
dimension hy b h,, relative permittivity K, and with verticies 1, 2, 3,
and 4, in the order shown.

III. FINITE-DIFFERENCE RELATIONS

To treat the problem of a dielectric guide, we first need
to define a finite cross section by enclosing the guide in a
“box” with electrically conducting walls sufficiently large
so that it will not perturb the modes. Because of symmetry,
we need to treat only one quadrant; the longitudinal
electric field E, must be either symmetric (magnetic
bouindary conditions) or antisymmetric (electric boundary
conditions) with respect to the x- and y-axes, while the -
longitudinal magnetic field H, has the opposite symmetry.
We then define a mesh that covers the region of interest
with rectangular elements (Fig. 1). These elements are
chosen so that the permittivity is constant inside each
element and the electric and magnetic walls each divide a
row of elements in two equal halves.

Consider one such element S, (Fig. 2). The contribution
of this element to the variational expression J can be
evaluated by using FD approximations' [17], [18]. Using ¢,
and vy, to denote the field values at point i, we have

hh
fS&dS “2 (A + a3+ i+ )

hh
fSWS 12(¢2+¢2+¢3+¢4)

[woras=["a [*(52) ars [ a [(52)
(10)

1The grid lines are aligned parallel to the x-, y-axes. For convenience,
we assume that point 1 is at the origin of the coordinates.
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For the first term, we assume that d¢/dx has the constant
value (¢; — ¢,)/h, on the segment 1-3 and the constant
value (¢, — ¢,)/h; on the segment 4-2. We then integrate
with respect to y and apply the trapezoidal rule

hy  (hif ¢ 2 _ hy , (9% 2
fodyfo (8x) dx_hlfo dy(ax)
=h1h2 Oy~ ¢ 2+ O3~ P 2
2 7 n )|

Likewise, we obtain for the second term
ko (haf 3¢\ Bhy ([ =01\ [a— s )
[l [ 52) o= (B + s
so that

- Chyhy [ 64— @ b3 —
2 12 4 2 3 1
[ Faras= s (et o

2 2
P~ Oy — Py
+( hy )+( hy ” v
A similar expression is obtained for the integral of |V,zlz|2

Finally, each term of the integral of (V,\[/ X V,qb)
evaluated as follows:

-1 hzﬂ ¢ 09
‘2”1fo 3x[3y 35 ool @

1, [$2=¢1 | P4~ ¢35\ rhdy
hl( n, | & )0 x Y

x=hy

2 '
~ h1h2 Py — Py + ¢~ ¢y 4/4_4’2 + ‘P3—\l/1
4 h, hy hy hy
(12)
and
a¢ a¢
Bx dy as

_‘1’1)(‘1’4_% n ¢3"¢1)

a 4 hy hy hy )’
The variational expression J is then obtained as the sum of
the contributions from each element S,. The stationary
property of J is utilized by differentiating with respect to
each of the 2N variables ¢, and ¢,. In this way, a set of 2N
linear equations is derived, which can be written in the
form

hy[da—Ys | &
[t

AX=k:BX (13)

where A is a symmetric, banded matrix, B is a diagonal,
positive-definite matrix, and X is an ordered vector of the
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Fig. 3. Rectangular mesh. By adding the contributions of the elements
S1s 57, S3, and Sy, we find that the FD equations at the node P are

equivalent to the equations resulting from the application of the five-
point Laplace operator for a single scalar potential.

variables ¢,, ¥,. Detailed expressions for 4 and B are given
in the Appendix.

By a transformation, we can reduce (13) to a simple
eigenvalue problem

A'X=k3X (14)

and
A'=B Y4B~ (15)

It is important to note that the matrix 4’ is also symmetric
and banded. This structure allows us to use a compact
storage scheme for the numerical calculations and efficient
algorithms for computing the eigenvalues and eigenvectors.
In the case of the FE method [12], [13], an equation similar
to (13) is obtained, but the matrix B is banded rather than
diagonal, with the same bandwidth as 4, and therefore the
eigenvalue problem is more complicated. '

An estimate of the errors in this method has been made,
with the result that errors in the eigenvalues will be of
O(h?), where h is the largest dimension of a rectangular
element in the case of a graded mesh. This property was
verified in the course of our numerical calculations on the
rectangular guide by comparing the eigenvalues corre-
sponding to successively refined grids, all other parameters
remaining unchanged. The accuracy of the eigenfunctions
computed numerically is much more difficult to assess, but
it is usually assumed to be one order of magnitude smaller
than the accuracy of the corresponding eigenvalue, i.e.,
O(h). A detailed discussion is given in [19].

IV. SOLUTION OF THE MATRIX EIGENVALUE
EQUATIONS

The solution of the matrix eigenvalue equation is sought
in the standard form A’X = A X, where 4’ is a symmetric,
banded matrix. If we use a mesh of N X N rectangular
elements (Fig. 3), then the order of 4 is 2(N —1)? and the
bandwidth (the number of subdiagonals including the main
diagonal) is 2 N. For a typical calculation N =15, and thus
the order equals 392 and the bandwidth equals 30.

The numerical algorithms chosen were specifically de-
signed for a symmetric, banded matrix; the memory re-
quirements are minimized by storing only the nontrivial
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elements. The routines employed are part of the well-known
EISPACK package [20]. The solution proceeds as follows.

a) A’is reduced to tridiagonal form by a series of Givens
rotations that eliminate successively each subdiagonal while
maintaining the band form (routine BANDR) [20], [21].

b) The eigenvalues in an interval of interest (that is, the
negative eigenvalues that are closest to zero) are de-
termined by the routine BISECT [20], [22]. The number of
eigenvalues in the given interval is computed from Sturm
sequences. Next, the eigenvalues are evaluated by refining
the input interval by a bisection process.

c) The eigenvectors are computed by inverse iteration
(routine BANDV) [20], [23]. The system (4’'—I)X=0» is
solved by Gaussian elimination: The right-hand-side vector
b is chosen to obtain a proper eigenvector.

It is important to note that by these methods it is
impossible to omit any eigenvalue, which is a very desir-
able feature in comparison with iterative methods.

If the finite-elements formulation had been used, the
resulting eigenproblem A’X=ABX would involve two
banded matrices. The minimum storage requirements are
doubled and the numerical methods available are all iter-
ative [12], [13], [24]

V. MODE DESIGNATION

All the possible modes of the rectangular guide may be
divided into four classes depending on the symmetry of the
longitudinal fields, since a longitudinal field H, of even
symmetry with respect to one particular axis is always
associated with a longitudinal field E, of odd symmetry
with respect to the same coordinate. These four classes are
designated in this work: HE?°, HE:°, HE?°, HE?¢. The
first superscript, o or e, indicates the symmetry of H, with
respect to the x-axis, while the second superscript denotes
the symmetry of H, with respect to the y-axis. The sub-
script n indicates the order of the given mode in its class.
The correspondence between these exact modes and the
designations adopted by Marcatili for his quasi-plane-wave
modes is discussed later.

VI. CALCULATED DiSPERSION CURVES AND

COMPARISON WITH OTHER WORK

Using the FD method described above, we wrote a
computer program that builds the matrices A4 and B for a
guiding structure with a given distribution of relative per-
mittivity and a given mesh. The details are given in [19].
The dielectric waveguide has a core of relative permittivity
K, and is surrounded by an infinite medium of relative
permittivity K,. In addition to these parameters, we specify
a value of B/k, (in the range \/E; —\/ITI for a guided
mode), which in turn determines 7=k2/k?. Then the
program computes the dominant eigenvalues k3, that is,
the negative eigenvalues closest to zero. For each of these
cigenvalues, the corresponding value of the free-space
wave-number k, is determined. This computation is re-
peated for a set of values of 8/k, to obtain a complete
dispersion curve. To obtain the fields, the program com-
putes the corresponding eigenvectors.
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Fig. 4. Approximation of a round guide by a square mesh. The hatched
clements are assigned a dielectric constant K, while the remaining ones
correspond to K, (< Kj).
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Fig. 5. Dispersion characteristic for the lowest order mode of a round
waveguide: the continuous line corresponds to the exact theoretical
solution for the HE;;-mode, while the dashed line is obtained from the
FD method. The theoretical solution has no cutoff, and it blends
smoothly with the V-axis to V' =0.

The dispersion curves are presented in the B — V descrip-
tion commonly used for optical waveguides (see [25], for
example). ¥ is the normalized frequency, defined by

for a waveguide, of dimensions a X b, and B is the normal-
ized phase parameter

_(B/k,)-K
b=k,

(17)

Our results using this finite-difference method are com-
pared below for three cases: a) the exact solution for a
dielectric waveguide of circular cross section, b) the
mode-matching solution of Solbach [11] for the rectangular
guide, and c) the quasi-plane-wave mode solution of
Marecatili [8] for a square guide.

A. Round Guide

A comparison with the round dielectric guide is particu-
larly indicated because it is the only case for which the
exact solution is known. We defined the permittivity of the
elements of a square mesh in such a way that they ap-
proximate one quadrant of a circular fiber. In Fig. 4, the
hatched squares are assigned a permittivity K, while the
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Fig. 6. Comparison between the FD and the mode-matching solutions.
The mode nomenclature for the mode-matching solution is in accor-
dance with Marcatili’s. The mode nomenclature for the FD calculations
is derived from the symmetry properties of the longitudinal magnetic
field with respect to the x- and y-axes. R is the aspect ratio a /b.
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Fig. 7. Comparison among the FD and the mode-matching solutions for
a higher relative permittivity, K; =12.

other elements correspond to K,. The exact dispersion
curve for the dominant HE,;-mode is presented in Fig. 5
along with the FD calculation. The total number of ele-
ments is N2 while the parameter M defines the number of
elements in the circular section (see Fig. 4). If M is chosen
too small, the round guide is poorly approximated. For
N =15 and M =10, the FD calculations are in very close
agreement with the theoretical curve, for larger values of B
where the mode is well confined. For smaller values of B,
the fields extend, further outside the dielectric, and the
mode is influenced by the outer box (metallic walls). To
obtain the dispersion curve in this frequency region, we
need to increase the ratio N/M. As a benchmark, we note
that for N =15, the CPU time required on an IBM 3032 to
compute the first five eigenvalues corresponding to one
value of B is about 1.4 min. For N = 20, this time increases
to approximately 4 min.

B. Mode Matching

Mode matching has been used to compute the modes of
high-permittivity image lines [11]. We compared the disper-
sion characteristics obtained by this method to our FD

calculations in Figs. 6 and 7. The mode designations used.

by Solbach [11] are in accordance with those given by
Marcatili [8]. The modes are designated EH,, when the
longitudinal field is mainly electric and HE,, when the
longitudinal field is mainly magnetic. The indices indicate
the number of maxima of the dominant electric-field com-
ponents. We computed by FD the modes belonging to the
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DOMINANT MODE OF A SQUARE GUIDE
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Fig. 8. Comparison among various solutions for the lowest order mode
of a square dielectric guide. For obtaining an accurate FD solution at
low frequencies, it is necessary to use a higher ratio N/ M. The solution
for a round fiber of equivalent cross-sectional area is shown for
comparison.
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Fig. 9. Comparison among various solutions for the lowest order mode
of a high-permittivity square dielectric guide. The solution for a round
fiber of equivalent cross-sectional area is shown for comparison.

same class of symmetry. For a permittivity of 2.22 (Fig. 6),
the two techniques give slightly different values for the first
mode,? but these are in closer agreement at higher values of
vV for the second mode. For K;=12.0, the agreement
between the two methods is excellent for the lowest mode,
as shown in Fig, 7.

C. Marcatili’s Approximation

In Figs. 8 and 9, we compare the dispersion curves for
the lowest order mode of a square guide of permittivity
K, =21 using three different methods: 1) Marcatili’s
quasi-plane-wave solutions, 2) the exact solution of the
HE,,-mode of a round fiber that has the same area as the
square guide, and 3) the FD method (N? is the total
number of elements and M? is the number of elements
defining the dielectric guide).

The quasi-plane-wave modes are designated E}, and
E,. The superscript indicates the direction of polarization
of the dominant electric-field component while the sub-
script denotes the number of maxima, respectively, in the
x- and y-directions. Table I lists the symmetry properties of
the longitudinal magnetic field H, for the four lowest order

E; - and EJ -modes. These properties determine the corre-

2The relative difference in 8/k, 1s of the order of 4 percent, which is
difficult to measure experimentally.
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Fig. 10. Dispersion curves for a square guide. The continuous lines
correspond to the FD solutions, while the dashed lines are Marcatili’s.

spondence between the quasi-plane-wave mode designation
and the more general mode designation used in this work.

The B-V curves are compared in Fig. 9 for K; =13.1. At
high frequencies, ¥ > 1, most of the field energy lies inside
the guide, and the dispersion curves computed by 1) and 2)
cannot be distinguished. This gives us a very good check on
the accuracy of our FD calculations: they agree very well.
Because the fields are well confined, the metalic walls can
be relatively close to the guide. For small values of V, we
know that Marcatili’s solution is not correct, since it erro-
neously predicts a cutoff frequency greater than zero. In
this region, the fields extend far outside the guide, and we
expect that the dispersion curve of the square guide will be
very similar to the curve of the round guide. This is
confirmed by our FD calculations. In this frequency range,
we needed to remove the metalic walls farther from the
guide, i.e., increase the ratio N/M. However, for the domi-
nant mode, the fields are expected to vary slowly inside the
guide, so we can achieve the increase in N/M by decreas-
ing M. When the ratio N/M is too small for the frequency
range studied, the dispersion curve appears to drop more
rapidly than it should.

For the same two values of permittivity, we have also
computed B-V curves for the higher order modes (Figs. 10

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MIT-32, NO. 5, MAY 1984

10 T T — T T T
K= 131 Ko 10
R=10

PHASE PARAMETERS '8
o o ©
» o0 ®
: .

o
™
T

h
0 L IR

TR L L L
6 8 10 12 14 16 18 20
NORMALIZED FREQUENCY: V

Fig. 11. Dispersion curve for a square guide. The continuous lines are

the FD solutions and the dashed lines are Marcatili’s.
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Fig. 12. Dispersion curves for rectangular high-permittivity waveguides.

R is the aspect ratio a /b for the rectangular cross section. As the index

ratio is increased, Marcatili’s solution (dashed lines) becomes a better
approximation, as verified by our FD calculations (continuous lines).

and 11) and compare them with Marcatili’s modes that
have the same axis symmetries. Because the particular
waveguide that we considered is square, the EJ - and
E;,-modes are degenerate. In the case of FD modes, the
HE?°-modes are degenerate with the HE;“-modes.

In Figs. 10 and 11, we observe that only the dominant
E{-mode agrees well with our FD computation. The dis-
agreement becomes progressively worse for higher order
modes. We recall that the propagation constants are the
stationary values of a functional (15). Therefore, for the
dominant mode, deriving the eigenvalues from an assumed
form for the eigenfunction, inherent in Marcatili’s methods
still leads to very good values for the propagation parame-
ter. We note that the modes closest to Marcatili’s £4- and
Ef-modes are not degenerate in our FD calculations.
Corresponding to each of these modes, we obtain two
modes, HE?® and HE;?¢ (with n equal to 1 and 2, respec-
tively), that become degenerate only for very large values
of V; for a very tightly confined mode, the fields corre-
sponding to these two modes are not much influenced by
the outer dielectric interface, and the fields can be superim-
posed by a 45° rotation.

We expect that Marcatili’s solutions will become more
accurate as the guide aspect ratio R = a /b increases. This
is confirmed by Fig. 12 that indicates that for R =35 we
cannot distinguish the FD solution from Marcatili’s.

VIIL

From the preceding section, it appears that Marcatili’s
solutions are relatively good for the propagation constants

CALCULATED FIELDS
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Fig. 13. Plots of the longitudinal fields of the lowest order mode of a
square dielectric guide of permittivity K; = 2.1 (K, =1.0). The continu-
ous lines are the fields computed by using Marcatili’s solution, while
the discrete points are obtained by the FD calculations. The values of V'
and B are indicated in Table II. The fields are plotted, respectively,
along lines y = h /2 and x = h /2, where h is the computational mesh
size. These are the grid lines closest to the x- and y-axes. The square
dielectric is located in the region —0.5<x/a<+0.5, —05<y/b<
+0.5, with ¢ = ). The thin dashed line indicates the position of the
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Fig. 14. Same as Fig, 13, except permittivity K; =13.1 (K, =1.0).

of the low-order mode of rectangular dielectric guides. We
now compare the field behavior of the low-order modes
computed by both methods.

In Fig. 13, we show the longitudinal electric and mag-
netic fields of Marcatili’s E{j-mode, computed for square
guide of permittivity K; = 2.1. The discrete points are the
field values at the node points for the corresponding
HE?¢-mode. The values are given along the grid line closest
to the x- and y-axes, k /2 away (see Fig. 1). In Fig. 14, we
compare the Ej{-mode with the FD equivalent, the HE{’-
mode, for a square guide of permittivity K; =13.1. In each
case, the fields have been separately normalized so that
(H,|max =1 and |E,| ... =1. The relative importance of the
E and H fields is obtained by considering, for both meth-
ods, the value of a parameter p that indicates the domi-
nance of E, and H,, or vice versa

Bl [ Zo ]|
”‘|Hz|m[§] ' (18)

The quantity [Z,/B] is the impedance of a plane wave
propagating in a medium of apparent index equal to the
normalized propagation constant 8. These quantities are
listed in Table II. For both values of the relative permittiv-
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TABLEII
COMPARISON BETWEEN MARCATILL’S SOLUTIONS AND FD

SOLUTIONS (N =15, M =18) FOR THE DOMINANT MODE OF A
DIELECTRIC GUIDE
Mode v B ]
e 5,44 0.58 0.91
K =21
K, = 1.0
BE® 5.44 0.60 1.65
Eil 6.26 0.62 16.9
K =131
K, = 1.0
HE® 6.26 0.60 13.5
| T T T
K =20 K:10

o~ o ooo

ooo, ©
coo o oo
oo o0 o o
066 © 6 o ocwmae
‘ ofo om ©© © 000D OO

coe o o0 0o o6 06 oo
oo o
s} L L L . L L I L L
o] 2 4 [} 8 10 12 14 6 18 20

NORMALIZED FREQUENCY: V

o ® oo o

NORMALIZED PHASE PARAMETER: B

Fig. 15. Typical plot of the cigenvalues obtained by FD calculations.
The continuous lines correspond to propagating modes, while the
dashed lines correspond to spurious solutions. They are found to exist
mostly in the range 0.5 < B <1.0.

ity, the qualitative behavior predicted by Marcatili’s ap-
proximation is observed. The fields behave sinusoidally
inside the waveguide and decay exponentially away from
the surface. However, our FD calculations show that the
fields are actually more tightly confined. In the case of the
low permittivity guide (K, = 2.1), the dominance of the E -
over the H,-field is underestimated by about 80 percent.
There does not appear to be a clear trend in the compari-
son of the values of p, computed by the two methods.

VI .

As explained in Section VI, the dispersion characteristics
are obtained by scanning a range of values for the normal-
ized phase parameter B and computing the corresponding
values of the normalized frequency ¥ for a given class of
modes. The computer then generates a plot such as the one
illustrated in Fig. 15. The open circles correspond each to
an eigenvalue. By taking a sufficient number of values for
B, it is possible to connect the results by smooth curves.
However, this cannot be done uniquely, as shown by the
two sets of lines in Fig. 15. The continuous lines corre-
spond to the dispersion characteristics we have shown, for
example, in Fig. 10. The interrupted lines do not seem to
correspond to physical modes. This is verified by plotting
the fields for the various modes. The “nonphysical” modes
do not exhibit the simple sinusoidal /exponential behavior.
Such spurious modes also have been reported by Corr and
Davies [17] and Ikeuchi ef al. [26]. According to Corr and

SpPURIOUS MODES
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Davies [17], these modes appear only for values of 8/k in
the range

K +K,
o (19)

For K, > 1, this means that the spurious modes should be
restricted to the range

05<B<1 (20)

which is generally the case in Fig. 15. However, we find a
few points outside this range that do not appear to fall on
curves for physically meaningful modes. We do not under-
stand the origin of these extra points. These nonphysical
solutions may arise from the indefinite nature of the vari-
ational formulation of the problem. Recail that we are
computing the eigenvalues k2 corresponding to a given
(negative) value of 7=k3/ki. For propagating modes,
both k# and k7 are real quantities: kZ >0 and k2 <0. A
negative value of 7 can also be obtained if k7 is negative
and k3 positive. This would be the case for transient
modes, that is, modes that have an imaginary value for
both the propagation constant B and the free-space
wavenumber k.

K /Ky, <B/k,<

IX. CoONCLUSIONS

We have developed a numerical method based on finite-
difference (FD) for computing the propagation constants
and fields of a dielectric guiding structure. The method was
tested in the case of a round guide for which a rigorous
analytical solution exists and also by comparison with
other work. The FD method gives good agreement, even
with relatively small meshes. It is more efficient than the
finite-elements method (FE) by a factor of 2 in terms of
computer storage. This would allow us to treat larger
meshes, being limited only by CPU time. The FD method
is also more favorable than the FE method in terms of the
numerical methods available for computing the eigenvalues
of the resulting linear eigenproblem.

We have compared our solutions to Marcatili’s quasi-
plane-wave solutions in the case of square guides that have
a permittivity much larger than the surrounding medium.
We found that Marcatili’s solution compares closely in
dispersion curves, but only for the lowest order mode.
However, because most practical dielectric waveguides are
used in a single-mode configuration, this does not diminish
the usefulness of Marcatili’s closed-form solution for
propagation constants and approximate fields. Devices that
depend critically on the details of the fields outside the
dielectric region (such as directional couplers) may require
the FD calculations.

Finally, the FD method can be applied to guiding struc-
tures of arbitrary shape and dielectric distribution.

APPENDIX
FD-MATRICES

The finite-differences (FD) method utilizes a mesh that
covers the region of interest with rectangular elements in
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Fig. 16. The element used for FD calculations can either be (a) the
general element or (b), (¢) an element divided by one or (d) two
symmetry axes. The parameters s and s’ define the symmetry of the
longitudinal magnetic field with respect to the x- and y-axis: s and s’
take the values +1. For example, H_|; = sH,|,, while H,|; = s’H.|;.

such a way that the boundaries and the two axes of
symmetry divide elements into two equal halves. Therefore,
we have four types of rectangular elements:

a) the general rectangular element (Fig. 16(a));

b) the element divided in two by a line parallel to the
x-axis (Fig. 16(b));

c) the element divided in two by a line parallel to the
y-axis (Fig. 16(c));

d) the element divided by two orthogonal lines (Fig,
16(d)).

On each of these lines, an electric or magnetic boundary
condition must be applied. The quantities s and s’ define
the symmetry of the longitudinal field ¢ = H, with respect
to one of these axes: s and s’ take the values -+1. If, for
example, for the element illustrated in Fig. 16(d), s takes
the value +1, this signifies that ¢ is an even function
about the line and, therefore, § = (we, /B)E, must be an
odd function: ¢, = ¢, ¢, = ¢3, ¥, = — ¢, ¥, = — ¥5. This
is equivalent to an electric boundary condition.

We can now evaluate the contribution of these elements
to the FD matrices 4 and B by using the FD approxima-
tions. For each element S,, We can write a relation of the
form

aJ, aJ |T
[(9—4:—’5'4/_1::' =Ap[¢z’¢z]T-kiBP[¢z’¢l]T' (Al)
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these relations are then summed to form 4X = k3 BX. For the general element (Fig. 16(a)), (A1) becomes'

_ ol | _ R 1 0 R w
- — -
39, T( +R)
aJ 1
e — -W — PR
3, P&+ %)
3%, T(R+l) 0
ap, R
¥ PR+
W, |
o,
094
o,
Y,
a4,
d¢,
o,
L M 4 L
21
121
éﬁz ]
123 Wk
——Lz—zkgdiag[l,P',l,P',LP',1,P']
b5
12
¢,
Yy
L
where
a2
s
B - K,
s 32
P'=p Kp
P=BK,
W =B.

21

.21

o5

¥,

¢;

¥3

R

Yy

1Only half of the matrices 4, are reproduced here: 4, is a symmetric matrix.
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(A2)

(A3)

(A4)
(A5)
(A6)
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Using the symmetry parameters s and s, we can compute the contribution of the element illustrated. In Fig. 16(a):

— - —

w,
d¢,
a,
Y,
@,
a9,
2,
AR

'r[(1~s)2R + %]

— k2hyh,diag[1, P’,1, P’]

In Fig 16(c)

w,
3%,
@,
Y
o,
¢,
v,
| e ||

2R+(1—s')2%]

— k2hyh,diag[1, P’,1, P']

In Fig. 16(d)

SN
e~

-©-
-

D D
~

~4W (s’ —s)

Q"
<
-

27[(1~ s’)z% +(1A)1R]

2Ws _RZT
P[(1+s)2R+%} —2W
[(1—s)2R N %]
_% -
11/2
P4
Yy
—2Ws’ —27R
P[2R +(1+s’)2%{—] 2W
T[zR +(1-5")
_% .
Y3
Py
Yy

—4W (s’ —s)

2P[(1+ S,)z_11€ +(1+s5)*R

2w o,
—2pP ,
—= ¥
—2Ws 4
2 2
P (1 — 8 )R + —E Yy
(A7)
“"2W ¢3
1
2'1% 2Ws’ by
P[2R+(1+s’)2% U,
(A8)
1 1 .
— k3hyhy diag[1, P] (A9)
¥ 121
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These relations are then used by a program to build the
matrices A and B systematically by adding the contribu-
tion of each element numerically. The necessary inputs to
the routine are:

the total number of mesh elements;

the local® mesh size &, h,;

the normalized propagation constant 8 = /k;

the permittivity K, at the location of the element S;

the symmetry parameters s and s’ that define the var1-
ous modes.
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